Clinical pathology 4 th class	Erythrocytes	Dr Mohammed A.Y.Al-Amery 2025
--	--------------	-------------------------------

Erythrocytes function is oxygen transport, which is mediated by hemoglobin.

Normal erythron: vary within the animal species in terms of size, number, shape, lifespan, metabolism, and response to anemia.

Normal equine RBC:

Equine erythrocytes are aboute $5-6\mu$ in diameter and lack central pallor. Blood from healthy horses often displays prominent rouleaux formation. Occasional the erythrocyte lifespan in horses average 145 days.

Bovine erythrocytes:

Are similar in size to horse erythrocytes and have a small amount of central pallor. The approximate erythrocyte lifespan is 160 days.

Marked variation in red blood cell shape (poikilocytosis) in calf blood.

Normal canine erythrocytes:

The canine erythrocyte is a relatively large $(6-7\mu)$, uniform, biconcave disc. This is reflected in the Wright's stained blood film as a cell with an area of central pallor (lifespan is 110-120 days while 70 days in cat).

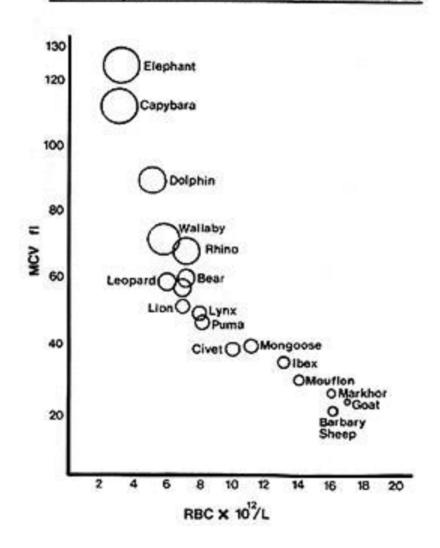
Small numbers of polychromatophilic erythrocytes are observed in blood smears from healthy dogs (<1.5% reticulocytes).

Normal sheep erythrocytes

Similar to bovine type but smaller (4.5μ) , no poikelocytosis.

Normal caprine erythrocytes:

Marked poikilocytosis can be a normal feature in the blood of some goats. Goat red cells are the smallest of the domestic animal species(3μ),. The caprine erythrocyte lifespan is approximately125days.


Normal Camel erythrocytes:

Elliptical (oval), smaller than cow and hoarse, lifespan range 90-120 day resistance to osmotic shock

Morphological features of normal red blood cells

Animal	Diameter (µm)	Central Pallor	Rouleaux	Anisocytosis
Dog	7.0	++	+	_
Cat	5.8	+	++	+
Horse	5.7	±	+++	-
Cow	5.5	+	_	+
Sheep	4.5	+	±	±
Goat	3.2	<u>+</u>	±	+
Llama	4.0 × 7.0*	_	_	±

Relationship between red cell number and size in mammals

Erythron evaluation:

a-Erythrocytes parameters : (can be by Automated hematology analyzer)

- 1. Hematocrit = packet cell volume (PCV) in % by use hematocrit centrifuge
- 2. Hemoglobin(Hb) in g by the cyanmethemoglobin technique
- 3. Red blood corpusculs (RBC) count hemocytometer

b-Red blood cell indices

- 1. Mean corpuscular volume (MCV) represents the red cell volume in femtoliters(fL) (PCV x 10) / RBC count (millions) = MCV (femtoliters), Reticulocytosis is the most common cause of macrocytosis (increased MCV)
- 2. Mean corpuscular hemoglobin (MCH) is how much Hb within erythrocyte in picograms(pg) (Hb concentration x 10) / RBC count (millions) = MCH(picograms)
- 3. Mean corpuscular hemoglobin concentration (MCHC) the average Hb concentration per erythrocyte in grams of Hb/100 mL of erythrocytes Hb concentration (pg)x100 / PCV (%) =MCHC(g/dL)
- 4. Red cell distribution width (RDW) can be determined automated cell counters. It is an index of the degree of anisocytosis or variation in size of the erythrons RDW=(SD_{MCV} / MCV) x 100.
- Anemias with significant microcytosis or macrocytosis have an increased RDW.
- Reticulocytosis may result in an increased RDW.

c-Staining and examination of the blood smear

Stains e.g.; Wright 's stain, Diff - Quik ${\mathbb R}$, Hemacolor ${\mathbb R}$, Gimza stain, Leishman stain etc.